首页> 外文OA文献 >Semistochastic Heat-bath Configuration Interaction method: selected configuration interaction with semistochastic perturbation theory
【2h】

Semistochastic Heat-bath Configuration Interaction method: selected configuration interaction with semistochastic perturbation theory

机译:半随机热浴配置相互作用方法:选择   配置与半随机扰动理论的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We extend the recently proposed heat-bath configuration interaction (HCI)method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], byintroducing a semistochastic algorithm for performing multireferenceEpstein-Nesbet perturbation theory, in order to completely eliminate the severememory bottleneck of the original method. The proposed algorithm has severalattractive features. First, there is no sign problem that plagues severalquantum Monte Carlo methods. Second, instead of using Metropolis-Hastingssampling, we use the Alias method to directly sample determinants from thereference wavefunction, thus avoiding correlations between consecutive samples.Third, in addition to removing the memory bottleneck, semistochastic HCI (SHCI)is faster than the deterministic variant for many systems if a stochastic errorof 0.1 mHa is acceptable. Fourth, within the SHCI algorithm one can tradememory for a modest increase in computer time. Fifth, the perturbativecalculation is embarrassingly parallel. The SHCI algorithm extends the range ofapplicability of the original algorithm, allowing us to calculate thecorrelation energy of very large active spaces. We demonstrate this byperforming calculations on several first row dimers including F2 with an activespace of (14e, 108o), Mn-Salen cluster with an active space of (28e, 22o), andCr2 dimer with up to a quadruple-zeta basis set with an active space of (12e,190o). For these systems we were able to obtain better than 1 mHa accuracy witha wall time of merely 55 seconds, 37 seconds, and 56 minutes on 1, 1, and 4nodes, respectively.
机译:我们扩展了最近提出的热浴构型相互作用(HCI)方法[Holmes,Tubman,Umrigar,J。理论计算。 12,3674(2016)],通过引入一种执行多参考爱泼斯坦-内斯贝特微扰理论的半随机算法,以完全消除原始方法的严重内存瓶颈。所提出的算法具有几个吸引人的特征。首先,没有困扰数量子蒙特卡洛方法的信号问题。其次,我们不使用Metropolis-Hastingssampling,而是使用Alias方法直接从参考波函数中对行列式进行采样,从而避免了连续采样之间的相关性。第三,除了消除内存瓶颈之外,半随机HCI(SHCI)比确定性变量更快对于许多系统,如果可接受的随机误差为0.1 mHa。第四,在SHCI算法中,可以以内存为代价适度增加计算机时间。第五,扰动计算令人尴尬地平行。 SHCI算法扩展了原始算法的适用范围,使我们能够计算非常大的活动空间的相关能量。我们通过在几个第一行二聚体上进行计算来证明这一点,这些二聚体包括F2的有效空间为(14e,108o),Mn-Salen簇的有效空间为(28e,22o)和Cr2二聚体的最大四元组,其中活动空间为(12e,190o)。对于这些系统,我们能够在1个,1个和4个节点上分别以55秒,37秒和56分钟的壁时间获得优于1 mHa的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号